Erythrodiol, an Olive Oil Constituent, Increases the Half-Life of ABCA1 and Enhances Cholesterol Efflux from THP-1-Derived Macrophages
نویسندگان
چکیده
Cholesterol efflux (ChE) from macrophages is an initial step of reverse cholesterol transport (RCT). The ATP-binding cassette transporter A1 (ABCA1) is a key transporter for ChE and its increased expression is regarded to attenuate atherosclerosis. Thus, the identification and characterization of molecules raising ABCA1 and thereby stimulating ChE is of pharmacological relevance. In this study, we tested dietary compounds from olive oil for their capacity of enhancing cellular ABCA1 protein level. We identified erythrodiol (Olean-12-ene-3β,28-diol) as an ABCA1 stabilizer and revealed its positive influence on ChE in THP-1-derived human macrophages. Among the nine tested compounds from olive oil, erythrodiol was the sole compound raising ABCA1 protein level (at 10 μM). None of the tested compounds impaired viability of THP-1 macrophages from 5 to 20 μM as determined by resazurin conversion. Western blot analyses of key membrane transporters contributing to ChE showed that the protein level of ABCG1 and scavenger receptor class B member 1 (SR-B1) remain unaffected by erythrodiol. Besides, erythrodiol (10 μM) did not influence the mRNA level of ABCA1, ABCG1, and SR-B1, as determined by quantitative reverse transcription PCR, but significantly inhibited the degradation of ABCA1 as evident by an increased half-life of the protein in the presence of cycloheximide, an inhibitor of de novo protein synthesis. Therefore, erythrodiol promotes ChE from THP-1-derived human macrophages by stabilizing the ABCA1 protein. This bioactivity makes erythrodiol a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis.
منابع مشابه
The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability
We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3-20 μM) increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that...
متن کاملPiperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages
SCOPE Increased macrophage cholesterol efflux (ChE) is considered to have anti-atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP-1-derived macrophages, and mechanisms underlying this effect are explored. METHODS AND RESULTS Without affecting cell viability, ...
متن کاملExtra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages.
The present study was aimed to investigate the effect of 12 weeks of extra-virgin olive oil (EVOO) consumption on the capacity of HDL to promote cholesterol efflux (CE) and to determine which CE pathways are modulated by EVOO consumption. Whole HDL and HDL₂/HDL₃ subclasses were isolated from the plasma of twenty-six healthy volunteers before and after 12 weeks of EVOO consumption (25 ml/d). EVO...
متن کاملLeoligin, the Major Lignan from Edelweiss (Leontopodium nivale subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages
Leoligin is a natural lignan found in Edelweiss (Leontopodium nivale ssp. alpinum). The aim of this study was to examine its influence on cholesterol efflux and to address the underlying mechanism of action. Leoligin increases apo A1- as well as 1% human plasma-mediated cholesterol efflux in THP-1 macrophages without affecting cell viability as determined by resazurin conversion. Western blot a...
متن کاملQuercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway.
The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and e...
متن کامل